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Dynamic finite-size scaling of the normalized height distribution in kinetic surface roughening
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Using well-known simple growth models, we have studied the dynamic finite-size scaling theory for the
normalized height distribution of a growing surface. We find a simple functional form that explains size-
dependent behavior of the skewness and kurtosis in the transient regime, and obtain the transient- and long-
time values of the skewness and kurtosis for the models. Scaled distributions of the models are obtained, and
the shape of each distribution is discussed in terms of the interfacial width, skewness, and kurtosis, and
compared with those for other models. Exponeptsand »_ , which characterize the form of the distribution,
are determined from an exponential fitting of scaling functions. Our detailed results reveal thaj_~4 for
a model obeying usual scaling in contrast#0 + 7»_<4 with »_=1 for a model exhibiting anomalous
scaling as well as multiscaling. Since we obtgin+ 7»_~4 for a model exhibiting anomalous scaling but no
multiscaling, we conclude that the deviation fram + _~4 is due to the presence of multiscaling behavior

in a model.
DOI: 10.1103/PhysReVvE.64.036110 PACS nuni)er05.70.Ln, 05.40-a, 68.55-a, 02.50-r
I. INTRODUCTION new exponent is necessary to explain the time evolution of

the mean step size unlike other models obeying usual scaling

Kinetic roughening of growing surfaces is a well-known for which there is no such new exponent. This phenomenon
nonequilibrium phenomenon and has drawn much attentiors called anomalous scaling behavior—the local and global
to the field of statistical and condensed-matter phyfdiesfl.  dynamic scaling behaviors are distinctly differ¢hb—17—
This is because of its practical applications in material fab-and several experiments have reported anomalous scaling be-
rication and the theoretical challenge of critical behaviorhavior in a variety of kinetic roughening systerfis8—23.
similar to that found in magnetic systems near the criticalKrug found a similarity between a simpletL-dimensional
temperature. One of the key issues in this active area is ty/BE model proposed by Das Sarma and Tambore&a
make a connection between experimental or simulational rd-10] and fully developed turbulence, and showed that this DT
sults and theoretical continuum growth equations derived[nOd?| exhibits spatlgl multiscaling .and its step size distribu-
from phenomenological argumerjts-5]. Many experiments  tion is not a Gaussiafi24]. Later simulation results,. how—
have been performed and simple atomistic growth model§Ver, indicate that the DT model does not exhibit true
that capture the key features of the system have been d@symptotic multiscaling5,25). _
signed to help us understand the dynamic evolution of sur- More fundamental understanding of a dynamic process of
face morphologies in terms of growth-related exponents tha@rowing films can be achieved from the normalized height-
are seemingly model dependent and compared to the theordlistribution function, often called the probability height-
ical prediction for the system. From the theoretical perspecdistribution function. One may be able to calculate the dis-
tive, the issue of understanding scaling and critical exponent§ibution analytically for some special cases by solving a
for a nonequilibrium system is of great importance. The ided"0kker-Planck equation obtained from a Langevin equation
of self-affine scalingd6] was introduced to explain the ki- that governs the time evolution of height fluctuations in a
netic surface roughening that evolves in a scale-invarian@’OWing surface[3,26—-2§; however, it is very difficult to
state with power-law behavior in characteristic length scalesS0lve the Fokker-Planck equation when a nonlinear term is

So far, a few universality classes, e.g., EdwardsPresentin the theoretical continuum growth equations. Fur-
Wilkinson (EW) [7], Kardar-Parisi-Zhang (KPZ) [8], t_herr_nore, obt_alnlng the early-time behavior of the distribu-
molecular-beam epitaxyMBE) class [9—11], etc., have tion is a formidable task. _ _
emerged from these considerations. For example, the sedi- Bésides the analytical calculations, several experimental
mentation of clay particles belongs to the EW universality2nd simulational results for the distribution are now avail-
class, whereas the Eden moft2], ballistic depositiof13], ~ @ble. The height distribution of a film of CuCl grown on
and the restricted solid-on-solid mod@®SOS [14] belong ~ CaR (111 is nearly Gaussian but slightly asymmetric once
to the KPZ class. Especially, for the MBE universality class,the substrate is completely covered by the incoming particle
there is an interesting point worth mentioning; with rough-flux [29]. The terrace width distribution of a vicinal Pt sur-
ness and dynamic exponents characterizing surface fluctuface[30] and the height distribution of a film of silver grown

tions (interfacial width of a growing surface, sometimes a On a silver substratg81] seem to be well approximated by a
Gaussian function. Asymmetric behavior of the distribution

is more pronounced in the simulations of a model for metal
*Present address: Materials Science and Engineering Laboratofgomoepitaxy with a step-edge barriéEhrlich-Schwoebel
National Institute of Standards and Technology, Gaithersburg, MDbarriep [32], zero-temperature-directed polymers in a ran-
20899; Email address: yunsic.shim@nist.gov dom potential in several dimensionf83], and a simple
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growth model of thin films by molecular beam epitah84].  the surface roughening. The height-height correlation func-
In this paper, we focus on and present results for the detion G(r,t), which is useful when local scaling behavior is

tailed shape of the normalized height distributions at earlyconcerned, is defined as

and late times obtained from extensive simulations of a va-

riety of well-known simple growth models that belong to G(r,t)y=(h(r+r",t)—h(r’,1)|?). (6)

diverse universality classes. The shape of the distribution at

intermediate times and in the asymptotic regime is discussedhen a model exhibits anomalous scaling behavior, the

in terms of three quantities, the interfacial width, skewnessmean step-size functioG(r =1t) has a scaling forni17]

and kurtosis, all of which will be defined in the next section.

We also discuss the characteristic of exponents that describe t7 forr<t?<L

the shape of scaled distributions. In Sec. Il we provide the G(r=1t)~ L& g Uz

L ) - or r<L<t

background related to kinetic roughening and discuss models

in detail that we have used. Scaling results of the distribu-

tion, skewness and kurtosis are presented and discussed i

Sec. Ill. Section IV contains a brief summary and conclu-

sion.

(7)

th k#0. The new exponent=0, however, for a model
that obeys usual scaling and there is then no tiraed sys-
tem sizel. dependence in E@7). It is interesting to note that
when the roughness exponént 1, a growing surface shows
super-roughening behavi@re., the ratio of the saturated in-
terfacial widthwg(L) to system sizé., wy(L)/L~L¢ 1 —o0
A. Theory asL—o), and this leads to the anomalous scalid]; for
(=1, G(r=11)~In(t) for r<t?<L and ~In(L) for r<L
<t When¢<1, however, the anomalous scaling has been
also observed in the simulations of thin film growth by MBE
[34,37,38. In order to explain these unexpected results, a
w(L,t)=([h(r,t)—(h(t))])¥2 (1)  theoretical growth equation that has an infinite number of
marginal operators has been proposed; see R&f34,39
whereh(r,t) is the height at the lateral positionand timet  for details.
and (h(t))=(1L9"Y)=,h(r,t) for a (d—1)-dimensional When multiscaling behavior of a growing surface is con-
substrate. The interfacial width has a scaling fg6h cerned, it is useful to consider thegh order height-height
correlation functionG,(r,t) [24] defined as

IIl. BACKGROUND

Kinetic roughening of growing surfaces is usually charac-
terized by the interfacial width when global scaling behavior
is concerned,

w(L,t)~L¢f(t/L?) 2

— ’ _ ’ qQ\1/0 — ¢Kkqp @
with the roughness exponeiitand the dynamic exponent Gq(r,)=([h(r+r".H—h(r".n[%) grarfatq(r/), )

In the asymptotic time and size regimes

tB for 1<t<lLZ? where the lateral correlation length &t)~tY for 1<t
w(L,t)~1 , (3)  <LZ% The scaling function in Eq(8) is fq(x)=const forx
Le fort>L" <1 and fy(x)~x % for x>1. Note  that for q=2,

G,(r,t)= G(r )2 in Eq. (6) and the interfacial widthw

whereB={/z. The skewness is defined as ~Gy(r> &)~ £¥2* 92, Thus, kp= K/2 andk,+ a,={; a gen-

S(L,t)=([h(r,t)—(h(t))]P)/w(L,t)3, (4)  eral form given in Ref[24] is kq+ aq={. As can be seen in
Eq. (8), multiscaling behavior characterized by the
and the kurtosis is defined as g-dependent roughness exponentg, is induced by
g-dependent local step-size fluctuations.
Q(L,H=[([h(r,t)—(h(t))]H/w(L,t)*]=3. (5 Besides the above quantities, it has been shown that the

normalized height distribution of a growing surface is well

The skewness measures the asymmetry of the height distr, épproxmated by the following forrf2,40)

bution and the kurtosis gauges the weight contained in the
tails of the distribution relative to a Gaussiptl. Note that -1

) i . . Ah(t))~w(L, Ah L,t)),
for a random variable with zero mean the normalized third L@R)~w(L, b AARMWL,D) ©
and fourth cumulants are equal to the skewness and kurtosis . . .
respectively{ 35]. Simulations of the restricted solid-on-solid Where 7 is a scaling function and\h(t)=h(t)—(h(1)).

model and zero-temperature-directed polymers in a random Note_that for a Gaussian height distributid®(Ah(t))
=r1./ 1 2 2
media(DPRM), which belong to the KPZ universality class, =[V2mw()] “exg —AhTn/2w (1) ], S(1)=0 and Q(1)

show that in the transient regime/l(*—0), the skewness 0. Using Eq (3.’) we find that the normali;ed heigh.t distri-
converges tdS(0)|~0.28-0.29[3,4,33 and for the latter t_>ut_|(_)n function n Eq.(9) can be fu_rther slmpllﬂed in two
DPRM model in(1+1)D, the kurtosis isQ(0)~0.12—0.16 limiting cases, i.e., at intermediate times and in the
[4,33] unlike the standard replica calculation implying that asymptotic regime as
the kurtosisQ=0 [36].

In addition to those quantities defined above, correlation (Ah(t)~
functions can be used to determine the exponents related to

tAF(Ah(t)/tP)  for 1<t<L?

L= ¢F(AN(t)/LY) fort>LZ, (10
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where F;(x4) and F»(x,) are scaling functions with the ar- (a)
gumentsx; andx,, respectively. Thus the detailed shape of
the scaling functions in both regimes can be obtained from % L

data collapse, i.e. | [T [ [ 1]

(b)
Fo(Xp)~L P (Ah()) for t>L2 (12) f% f%
where x;=Ah(t)/t? and x,=Ah(«)/L¢ with Ah(x) | [ [] | [ []
=Ah(t>L7.
The scaling functionsF;(x;) andF,(x,) seem to be well
approximated by an exponential function with the arguments (©
X1 andx, [3]. At intermediate times, l_% J_ZJ
exd—a;x; ] forx;>0 | —% (1] [ 1]
Fi(Xg)~ " (13 _ o
exd —a_x; ] forx,;<0 FIG. 1. A schematic rule for diffusion for three growth models

in (1+1)D. The arrows show possible different pathg) The

and for the long-time asymptotiffinite-size roundedre- ~ Edwards-Willkinson (EW) model, (b) the Wolf-Villain (WV)
gime, model, and(c) the Das Sarma-TamborenéaT) model.

dh N
- exd —b.,x;7] forx,;>0 ” —e =YV (Vh)2+ (1), (15)
X
2 exff —b_x;"] forx,<O0,
wheren(r,t) is assumed to be &correlated Gaussian white

wherea. andb. are constant in each case./jf =5 = noise. However, in 21D the exact solution of the KPZ

2,
then the distribution is simply Gaussian and reflects the cerfduation has not been obtained and only approximate solu-
tral limit theorem in statistics. Halpin-Healy and Zhang tions by renormalization group and self-consistent calcula-

[3,41] obtained the distribution functions of interfaces in a tioNs are available.
random media, using a replica scaling analysis. His result -
shows that in(1+1)D, the exponentsy,=5/2 and 7_ 2. Edwards-Wilkinson (EW) model
=3/2 for 1<t<L? and»,=»_=2 for t>L% with {=1/2 A freshly landed particle on a randomly selected site de-
and z=3/2. It is interesting to note that in the asymptotic noted by a square with slanted lines shown in Fig) $eeks
regime, the height distribution of the interfaces in a randonthe lowest height in the nearest-neighbor sites and diffuses to
media is Gaussian angl, + 7_=4 in both regimes. the site provided that it has lower height than the presently
occupied site. If there are two equally probable sites provid-
ing the same lower height, then the particle chooses one of
them randomly and relaxes to the site. If there is no such site,
We have simulated a variety of simple growth models tothen the particle stays there and becomes immobile. Edwards
determine the scaling form and shape of the normalizeénd Wilkinson discussed their model in detail in their pio-
height distribution. Figure 1 shows a schematic rule for dif-neering work[7], but the atomistic simulation of the EW
fusion for a freshly deposited particle in each modelIn  model was first done by Famil@#2]. The EW model is well
+1)D, and it is straightforward to extend the growth algo- described by the EW equation
rithms to higher dimensions. In our simulations, we have
used periodic boundary conditions and a growth process dh 2
starts with a flat § — 1)-dimensional substrate at tinie=0, 5t vV, (16
i.e.,, h(r,t=0)=0, in all the models.

B. Models

which yields(d)=(3—d)/2 andz=2 [7,43]. Note that in
1. Restricted solid-on-solid (RSOS) model 2+1D, the nature of the diffusion in the atomistic model is
The growth of a surface proceeds by increasing the heigH'{nportant in determining its relationship to the EW equation
h(r) by one, i.e.h(r)—h(r)+1 on a randomly selected site
r provided that the neighboring height differeriéeh|=0,1 -
is obeyed at all stages. This rather simple growth model pro- 3. Wolf-Villain (WV) model
duces a compact surface with excellent scaling. Simulations A freshly deposited particle on a randomly selected site
yielded{(d)=2/(d+2) andz(d)=2(d+1)/(d+2) [14]. It  seeks a nearest-neighbor site providing a maximum coordi-
is also known that th€1+1)D RSOS model is well de- nation number and moves to that site as shown in Filg). 1
scribed by the KPZ equation If there are two equally probable sitBa (1+1)D], then the
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particle chooses one of them randomly. If there is no such 5. Absolute solid-on-solid (ASOS) model
site, then the particle stays there and becomes immobile.
Since |n.the WV moddg9], each part.|cle looks to increase its 4,4 deposition probabilityr with the Hamiltonian H

bonds with neighbor sites, at long times and for large system__(J/2)2< JIh(r)=h(r")|, where (r,r') denotes the
. . I’,I" y H

size, a site at a valley on a surface tends to be more prefep ot neighbor summation in d1) dimensional sub-
abl_e fora partlcle_to diffuse to than t_he one on the top of h'"'strate. First, a random numbend is generated, and if the
This movement induces a downhill current and the WV

- . numberrnd=r, then a particle is deposited on a randomly
model exhibits a crossover to the EW behavior, however, th(gelected site; otherwise, the particle on that site attempts

crossover only appears at long times and for large SYSteMg, tace diffusion. The diffusion movement is accepted with

[45]. Note that unlike the previously introduced RSOS an o " /
EW models that exhibit usual scaling, this WV model exhibﬁheeasgz?_ﬂganhgé?t;?glItwv(r_>r ) to a randomly selected

its anomalous scaling witlk/z=0.38 [16] at early times
(< the crossover time.), but which is transient behavior
before the crossover.

In this model[48], key parameters are the temperatiire

W(r—r")=[1+exp —AH/kgT)] %,

whereAH is the energy difference between before and after

diffusion. We specifically choose this model as an example in
A freshly deposited particle having only one nearest-order to compare its scaled distribution with that of the

neighbor bond seeks a neighboring site providing moreabove EW model since this ASOS model belongs to the EW

bonds than the present one and diffuses to that site as showniversality clas§48]. In our simulation, we used the tem-

in Fig. 1(c). If the present site has more than one bond, therperatureT=1J/kg and deposition probability=0.1 in (1

the particle becomes immobile. If there are two neighboring+1)D that are the same as in R@48].

sites[in (1+1)D] providing more bonds regardless of the

number of bonds, then the particle chooses one of them ran- 6. Molecular-beam epitaxy (MBE) growth model

domly and moves to the site. The continuum growth equation

for the DT model[10] turns out be more complicated than

initially thought. It is worth noting that the WV and DT

models have been initially suggested to describe the growt

of thin films by MBE with the fourth-order linear Langevin

equation(often called Mullins-HerringMH) equation[46])

4. Das Sarma-Tamborenea (DT) model

In this model[48], the diffusion process is thermally ac-
tivated and reversible. There are two important time scales in
his film growth simulation; one is for particle deposition and
e other is for surface diffusionst is time between the

successive deposition of particles arglis time between the

successive surface diffusion events during the time interval
6t. Therefore, the total number of everisoccurring during

ah 4 L . i

— = —koV*h+ (1 1). (17)  the time mtervglﬁt is propqrtmnal to t_he sum of the.total

at number of particle depositiofF) and diffusion(D) during
deposition of one monolayékL). If one chooses the unit of

Later, however, anomalous scaling behavior has been rgyarticle-beam fluxF) as 1 ML/sec, then during 1 sec, the
ported in the WV and DT models with different growth equa- total number of events is

tions from Eq.(17) [15,16. Especially, the DT model in
(2+1)D exhibits a crossover at late times and yields the same T=F+D,
values of¢ andz[5] as those {=2/3 andz= 10/3) obtained

from the Lai—Das Sarma-VillaifLDV) growth equation \yhere the diffusion constaill is measured in the unit of per

(11,47 site per secondl/site/3. Here, probability for particle depo-
H sition is 7=F/T,=1/(1+D/F) and probability for surface
J diffusion is 1— . Thus, the ratioD/F is one of the key
o 4 2 2 ,
at KoV TN VAV (1,0). (18 parameters determining surface morphologies.

The simulation process of this model is rather simple.
It has been shown that the ratio of the anomalous exponent First, a site is selected randomly, and then a particle is de-
to the dynamic exponert, x/z~0.4 for the (1+1)D DT  posited on the selected site with probabitityotherwise, the
model[17]. The same model in-21D shows that the ratio, particle at that site tries to diffuse to one of the nearest-
x/z—0 long before the interfacial width saturates; howeverneighbor sites. The transition probabildy(r—r") is given
the long-lived transient behavior is much stronge¢lirt 1)D as
[5]. This result indicates that the anomalous scaling may be

transient behavior, and asymptoticaly—0. Also note that W(r—r'")=exd —En(r)/ksT],
the LDV equation yieldg=1 in (1+1)D, and thus, results
in logarithmic anomalous scaling. where the effective binding energi,(r)=nJ with J>0

In our simulation of the DT model, we focus our attention andn is the number of lateral bonds with=0,1,2,3,4 in a
on a rather small system that exhibits anomalous scaling &svo-dimensional substratésimulations have been done in
well as multiscaling since the detailed discussion of the2+1 dimensions Once an atom overcomes the energy bar-
crossover is beyond our scope of this pafzerd crossover is rier E,(r), it diffuses to one of the nearest-neighbor sites
very difficult to deteck randomly with probability 1/4. It has been shown that the
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FIG. 2. Time- and size-dependent behavior of the normalized height distributions and their scaling plotd2eriffiz RSOS model.
(a) Time- and(b) size-dependent behavior of the distribution. Scaling plotst intermediate times witfg=1/4 and(d) in the asymptotic
regime with{=0.4.

Arrhenius type of surface diffusion breaks the up-down sym+inite size of system, as shown in FiggaRand 2b). Note
metry [48], possibly resulting in nonzero skewness. that the maxima of the distributions are ah(t)=0, i.e.,

All the length scales have been measured in the unit of(t)=(h(t)). We have also obtained excellent scaling for the
lattice constant and timet is measured in units of mono- interfacial widthw(L,t) and forP,(t)=P_(Ah(t)=0) with
layers(ML) deposited. Simulations have been performed ory=0.4 andz=1.6. The scaling ofP,(t), i.e., L‘P_(t) vs
Linux workstations with the random number generatan2, /) z clearly demonstrates tha, (t)~w(L,t) %, a feature
given in Ref[49]. Many averages have been taken to reducp; e do not show here to avoid overcrowding of figures.
statistical errors below 5%, especially in a calculation of theThis relationship can be also obtained from E).in which
normalized height distribution that requires more averagesy,o scaling functionF(Ah(t)/w(L,t)) is constant when

for example, 21 00Q3000 different runs have been aver- = : S . )
aged forL =100 (160 with a different random number seed Ah('t)—O. Thls re;su]t '”.‘p"es that the time-dependent nor
malized height distribution can be also used to extract the

for the (1+1)D DT model. exponents characterizing the universality class of the system.
The scaled distributions at intermediate times and in the
ll. RESULTS asymptotic regime shown in Figs(&® and 4d) are asym-
dmetric, but the former case is slightly more skewed, indicat-

As mentioned in the introduction, our focus is on detaile . . ! )
scaling behavior of the normalized height distribution of "9 that the magnitude of the skewness at intermediate times

each model and the difference between models obeying usuli [arger than that for the latter case. Figure 3 shows the

and anomalous scaling. We first start with models obeying€@ling results for the skewnessand kurtosisQ for the
usual scaling. SOS and EW models. For thg+1)D RSOS model, we

obtained S=—-0.23+0.02 and Q=-0.15-0.02 in the
_ asymptotic regime, shown in Figs(a3 and 3b). On the
A. Usual scaling other hand, for thg1+1)D RSOS model, the asymptotic
Figure 2 shows time- and size-dependent behavior of thealue of the skewness <0 with z= 1.5, which is the same
normalized height distributions and their scaling plots for theas that presented in Réf3]. The asymptotic scaled kurtosis
(2+1)D RSOS model at intermediate timpa(t)~t# with for the (1+1)D RSOS model, shown in Fig.(8, is Q=
B=1/4] and in the asymptotic regimevy(L)~L¢ with ¢ —0.61+0.02.
=0.4]. Those values of the exponermsand ¢ that we ob- Unlike the (2+1)D RSOS model, the maximum of the
tained are the same as those reported in Réf. The maxi-  scaled height distribution of thetllD RSOS model at inter-
mum of the distribution decreases due to the increase in sumediate times does not appear to be\at(t) =0, although
face fluctuations as growth proceeds, and reaches a steadye cannot exclude this possibility considering the error bars.
state value due to the saturation of surface fluctuations in A similar result has been also observed in H88]. How-
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S(L,¢)

FIG. 3. Scaling plots of the skewness and kur-
tosis for the RSOS and EW model&) The
skewnessS=—0.23+0.02 and(b) the kurtosis
Q=-0.15+0.02 in the asymptotic regime for

0.4 the (2+1)D RSOS model witle=1.6. Arrows in
(a) and(b) show the minimum and maximum val-
00 ues of the skewness and kurtosis for 160, re-
~ spectively. (¢) The asymptotic kurtosisQ=
=3 —0.61+0.02 for the(1+1)D RSOS model with
O o4 1 z=1.5 and(d) Q= —0.60+0.03 for the(1+1)D
+§MX3»ACA+M%%AQ, @% dgg & EW model withz=2. The transient-timet(L*
~0.8 ‘ —0) (e) skewness andf) kurtosis for the(1l
, 02 0.3 +1)D and(2+1)D RSOS model. In the thermo-
t/L dynamic limit, S(0)= —0.434+0.002 andQ(0)
=0.370+0.002 in(2+1)D with 20<L <640 and
-0.2 ' S(0)=—0.292+0.002 andQ(0)=0.157+0.002
® 2+1d(z=1.6) | in (1+1)D with 200<L=<10% in the (1+1)D
-0.3 © 1+1d(z=1.5) case, 10 has been multiplied tto ** for clarity.
< ]
vt 0.4 ]
(e) ()
-0.5 . 0.0
0.0 L_q./l 0.2 0.0 L_q./l 0.2

ever, this behavior does not exist in ttle-1)D EW model
in which the scaled skewness yields b@&ft<L? andS  —0.292-0.002 and Q(0)=0.1570.002 in (1+1)D for

~0 with {=1/2 andz=2, but as shown in Fig.(8), the = RSOS model; the latter results are consistent with those in
kurtosis Q= —0.60+0.03 in the asymptotic regime. Note Ref.[33]. It is worth noting that Eq(19) implies that the
that those asymptotic values for tiie+1)D EW model are  dynamic exponent can be obtained from the early-time re-
almost the same as those for tfie-1)D RSOS model. For gyt of the skewness or kurtosis.

the (1+1)D ASOS model, we find5~0 andQ~ —0.58 in The height distributions of th€2+1)D EW model at in-

the asymptotic regime for the largest system size=820)  termediate times and in the asymptotic regime are also
that we have simulated. This result for the ASOS model, tha;5ssian as expected. It is interesting to note that at early
the asymptotic values of the skewness and kurtosis With ines the skewness and kurtosis oscillate around zero with a
=1/2 andz=2 are almost the same as those for the 1)D eriod of 1 ML due to the quasi layer-by-layer growing na-
EW mc_>de|, IS not surprising since the model belongs to th ure of the model, and then decay to zero at late times. The
EW universality class. relative phase difference between the oscillating skewness

I . .
The trangent time {L.*—0) behavior of the skewngss and kurtosis is 1/4 ML simply because the skewness is an
and Kurtosis for the RSOS model {2+1)D [as well as in . A :
odd function but the kurtosis is an even function.

(1+1)D] are shown in Figs. (8 and 3f), where we plotted . . -
the minimum value of the skewneSs,(L,t) and the maxi- In order to obtain the detailed form of the scaled distribu-
tions in Fig. 2, we have fitted them to the exponential func-

mum value of the kurtosi®na{L,t)— denoted by arrows in . . . .
PPN : tions given in Eqs(13) and(14). Figure 4 shows the expo-
(@ and (b) as an example foL.=160—as a function of nents 7. and 7 for the (2+1)D RSOS model at

L2, As can be seen in Figs(& and 3f), there is simple . i . ) ) .

size-dependent behavior in the transient-time skewness a termedlatg timesa) and n the asymptotic regimb).

kurtosis such that ower-law fits to the data yielgy, =2.6+0.2 andy_=1.5
+0.1in(a) and 5, =2.3+0.2 andn_=1.67+0.13 in (b).

S(0) = Spin(L, 1) ~L ™Y and Q(0)— QuaL,t)~L 7 The results of fits for the RSOS, EW, and ASOS models as
(19 well as the transient- and long-time values of the skewBess

are given in Table I.

where S(0) andQ(0) are the transient-time skewness and As can be seen in Table I, in the asymptotic regime, the

kurtosis in the thermodynamic limit, respectively. Note thatvalues of the exponents, and »_ for the (1+1)D RSOS

Eqg. (19 explains the data well and yield3(0)=—0.434 model are the same as those for tfie-1)D EW model

+0.002 andQ(0)=0.370+0.002 in (2+1)D and S(0)=

036110-6
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10? : its tails) with . =#n_=~2. If we examine the value of the
exponentsy, and »_ as a function of the skewne& we

can easily confirm that a deviation from the Gaussian distri-
bution is determined by the strength of nonzero skewness.
Another interesting point is that the sum of the exponents
and 7_ is .+ n_=4 within the error bars, a feature that
may be an artifact of the central limit theorem in statistical
physics that yields a Gaussian distribution. Note that the cen-
tral limit theorem is valid if random variables are all similar
and there is no dominargor only a small number of domi-
nand one than otherg50].

—In[F,(x,)/F,(0)]

B. Anomalous scaling

We first show the time evolution of the normalized height
distribution of the(1+1)D DT model in Fig. %a). The maxi-
mum of the distribution decreases due to the increase in sur-
face fluctuationgthe interfacial width as timet increases,
and reaches its steady-state value as the interfacial width
saturates. Note that the locations of the maxima of the dis-
, tributions are not abh(t)=0 but shift to the right, depend-
107" 10° 10 ing on timet. Figure 8b) shows the shifish(L,t), which is

|x2| defined as the location of the maximum measured from zero
in the x axis, as a function of system sizeand timet. For

FIG. 4. The exponents,. and#_ obtained from an exponential small timet<10? the shift is about one lattice constant and
fit with 8=1/4 and{=0.4 for the(2+1)D RSOS model. The solid then increases before saturating at late times. At intermediate
(dotted line is a power-law fit, yielding the exponents, (7-). times, the shiftsh(t)~t? with ¢=0.38+0.02, and in its
(@ n,=2.620.2 andy_=1.5+0.1 at intermediate times_ witky Steady Statesh(L)NLa with @=1.48+0.07, shown in the
=Ah(®/t? and (b) 7,=2.3+0.2 ?nd 7-=167x0.13 in the  qet of Fig. b). The values ofp and « that we have ob-
asymptotic regime withx;=Ah(e)/L*, tained for the shiftoh(L,t) are almost the same a8

within the error bars with the same values of the roughness 0.375 and~1.47, respectively, obtained from the interfa-
exponent, skewness, and kurtosis. Our simulation result fogial width w(L,t) given in Ref.[10]. This result simply im-
the (1+1)D RSOS and EW models in the regime, that bothplies thatsh(L,t)~w(L,t).
distributions are well approximated by Gaussian, is consis- Similar behavior in the shifisSh(L,t) with ¢~0.38 has
tent with the (1+1)D steady-state theoretical solutions of been observed in th€l+1)D WV model. Due to the cross-
Fokker-Planck equations for the KPZ and EW equations—over to the EW behavior aftdg~10° [45], we have plotted
both yield a Gaussian height distributi8]. However, we the ratio of6h(L) to wg(L) instead of plottingsh(L,t) itself
find a discrepancy in the asymptotic kurtosis between thén the asymptotic regime. As shown in Fig. 6, the ratio
theoretical solutiongimplying Q=0) and simulation results Sh(L)/wg(L) is constant for 4&L<120 within the error
for the models Q~ —0.6). It should be noted that nothing is bars, and decreases slightly foe=120. The trend of the
known about the preasymptotic regime even in the 1)D  decrease in the ratio for a rather large system kiseeasily
KPZ problem except that the up-down symmetry must beexplained because it is expected that fdr>t,
broken due to an explicit nonlinear symmetry breaking termsh(L)/wgL)— 0 due to the crossovesh(L)— constant but
in the KPZ equation. wy(L)~L2—o aslL—o. We also calculated theth-order

It is clear from Table | that when the skewness is zero, théeight-height correlation functio,(r,t) for the (1+1)D
distribution is well described by a Gaussian functiercept WV model to check multiscaling behavior. Our result for

—In[F,(x,)/F,(0)]

TABLE I. The values of the exponentg, and »_ and the skewnesS(L,t) for various growth models
at intermediate times (&t<L? and in the asymptotic regimeés¢L?). The exponents;, and n_ for the
(2+1)D EW model are determined by a Gaussian fit to the data.

1<t<lL? t>L*
Model Dimension S(0) R - S R -
EW 1+1 =0 2.0:0.1 2.0:01 =0 2.0+0.1 2.0:0.1
EW 2+1 =0 2 2 =0 2 2
ASOS 1 =0 =2 =2 =0 =2 =2
RSOS 1 —0.292+0.002 2.4-0.2 1.70.2 =0 2.1+0.2 2.0£0.2
RSOS 21 —0.434:0.002 2.6-0.2 15-0.1 -—-0.23+0.02 2.3-0.2 1.67/0.13
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o }L/FI‘/‘ t 20 FIG. 7. Scaling plots of the normalized height distribution at
l s 40 intermediate times and in the asymptotic regime shown in the inset
10° s f gg for the (1+1)D DT model. Here,3=0.375 and{=1.45 with the
. . - . - - constants, =0.12 anda,=0.022.
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scaling has been obtained in both regimes. The scaled distri-
FIG. 5. The time evolution of the normalized height distribution butions in both regimes appear to be asymmetriC, indicating
and the shifish(L,t) in the distributions for th€1+1)D DT model.  that the skewness iS NONzero: inde®t) = — 0.50+0.01 for
(@) The normalized height distributioR [Ah(t)] for system size  1?<{<10f andL = 320. We have obtained excellent scaling
L =280 as a function of six different time (b) The shiftsh(L,t) in for the interfacial widthw(L,t) and for P, (t) with {=1.47
the time-dependent distributions shown(a as a function of sys- andz=4 for svstem sizd_<’80 We have also observed a
tem sizeL and timet. The solid line is a power-law fit to the data verv slow crosZover fror)ﬁ3=\0 3'75 to8=0.333 at late times
with sh(t)~1%38002 The inset in(b) shows the shifsh(L) in the Witf}lla change i’~1.5 to a Ic;wer valug .robabl (—1) in
asymptotic re%izneteé 0'I7'he doted fine in the inset is a power-law ﬂt(l+1)D as Lgbecome.s larger Howeverpthe cro{:sgver is not
with sh(L)~L>*5%" : '
(L) so manifest, but rather quite slow in the range of system
. _sizes and time that we have simulated.
:10,4 at t=10(<t,) shows that the model exhibits multi-  The exponents;, and#_ for the scaled distribution of
scaling[51], but that is transient behavior before the CrosS-he (1+1)D DT model, shown in Fig. 7, are given in Fig. 8
over to the EW behavior. where x;=Ah(t)/t*—a; and x,=Ah(»)/L¢—a,. It turns
The scaled height distributions of tli&+1)D DT model out that at intermediate times;, =2.03+0.12, and in the

at intermediate times and in the asymptotic regime are pr ssymptotic regimez, =1.90+0.16 when bothx, and x,
sented in Fig. 7. In order to make the maxima of the scalee(iO, indicating that the distributions for thosq and x,

distributions be at zero on theaxis, constant®, anda,  geems to be well approximated by a Gaussian function.
have been subtracted. With=1.45 andg=0.375 excellent \yhen bothx, and x,<0, however, the Gaussian behavior
with 7_~2 is manifest only near the maxima, but [xg|
0.8 and|x,| (where bothx; andx,<0) become larger, the dis-
tributions are no longer Gaussiawy;, deviates from 2 in
06 | both cases. It is quite clear from the insets of Figs) &nd
8(b) that the exponenyy_=1 whenx; andx,<0 (but not
near the maximg i.e., the distributions are pure exponential
4 functions. Based on these results, the relatjont n_~4 is
J not valid, but ratherp, + »_=~3 in both regimes. For the
ol (1+1)D WV model, we observed very similar behavior in
the height distributions and obtaineg, =1.85-0.1 and
n_=1 for L<160 in the asymptotic regime. Note that the
0r 1 DT and WV models exhibit multiscaling in the range of sys-
tem size and time that we used in the calculation.

Figure 9 shows the normalized height distributions of the
(2+1)D MBE growth model in the asymptotic regime for the
temperaturekgT/J=0.234 and 1. The distribution at the
temperaturekgT/J=0.234 is not Gaussian but rather an
asymmetric skewed functiofthe skewnessS=—0.61 for

o
n

o
n
—e:

i
—e
—e
e
e
o
e

Sh(L)w,(L)

100 150
L

50 200

FIG. 6. The ratio of the steady-state shifi(L) to the saturated
interfacial widthwg(L) for the (1+1)D WV model.
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FIG. 8. The exponentg, and»_ obtained from an exponential
fit for the scaling results shown in Fig. @) At intermediate times
[X,=Ah(t)/t?—a,] with L=100 andt=10°. Filled (open circles
are forx;>0 (x,<0). The solid line is a power-law fit to the data
for x,>0, yielding ., =2.03t0.12. The inset is a linear plot of the
data forx,;<0, and the dotted line is a guide line to the d&k.In
the asymptotic regiméx,=Ah(»)/L*—a,] with L=100. Filled
(open circles are forx;>0 (x,<0). The solid line is a power-law
fit to the data forx,>0, yielding », =1.90=0.16. The inset is a
linear plot for the data for,;<<0, and the dotted line is a guide line
to the data.
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FIG. 9. The normalized height distribution of tk&+1)D MBE
growth model in the asymptotic regime. Here, the temperature
kgT/J=0.234 and 1L =60, and D/F=1C. The solid line is a
Gaussian fit to the data forkgT/J=1 with P(x)
=0.133 exp—0.0548&2] which explains the data well and implies
n,.=mn_=2. The inset shows the exponenys and »_ for the
temperaturekgT/J=0.234, wherex,=Ah(®)/L¢—a,>0 with ¢
=0.7 anda,=0.13. Filled(open circles are forx,>0 (x,<0).
The dotted line in the inset is a power-law fit to the data Xer
>0, yielding »,=2.17£0.20. A linear plot of the inset yields
n_ =1, which is not shown here to avoid overcrowding of figures.

range of system size and timé €80 andt<5x 10%), we
have observed isolated grooves in a surface profile that seem
to be responsible for a generic instabiligy rapid growth of
the magnitude of the height in a local region of the sygtem
leading to the multiscalin@s3].

When the temperaturkgT/J=1, however, the distribu-
tion is well approximated by Gaussian with, =»n_=2,

L=60). The location of the maximum of the distribution for 5,4 we have obtained=1, z=4, k~0 with G(r=1¢)

kgT/J=0.234 does not seem to bef (o) =0 but rather at

Ah(«)=2 even though it may be indistinguishable within
the error bars. The scaling analysis of the distribution shows

almost the same result that shown in Figb)8with 7,
=2.17+0.20 andnp_=1 wheren, + n_~3.2; see the inset
of Fig. 9.

For kgT/J=0.234, we have observed anomalous scaling

[52] as well as multiscaling behavidsee Fig. 1D with ¢
=0.7 andz=3.4. Note that these values of the exponelits,

and z, are close to the theoretical prediction of the LDV O

equation. As can be seen in the inset of Fig. 10 G(r

¢t o
&b+ 0

AWM=

D000

(D)

=1t), the curvature of the dotted lines indicates that the
multiscaling as well as anomalous scaling behavior observec
at this temperature seem to be transient due to a long cros:
over (probably to k,~0 in the long-time asymptotic re- 9 . t
gime): indeed, Go(r=11t)~In(t) for 10*°<t<10" due to 1
kq/z~=0, but this may not be the true asymptotic behavior.

Note that a power-law fit to the data for the region does not g 10. The gth-order height-height correlation function
yield kq+ aq={, but we have observed a systematic devia-g,(r,t) for the (2+1)D MBE model att=10". The inset shows the
tion from that. The curvature does not result from finite-sizegth-moment step-size functio,(r=1t). Here, L=80, kgT/J
saturation sincev(t) ~t? with S~ 1/5 for L=80 and 3@st =0.234, andd/F=10?. The solid lines in(a) are power-law fits to
<10% and thus implies that in the limit of—, Gy(r the data, yieldingx,=0.58+0.02,0.45-0.01,0.380.01, and 0.33
=1t)~const becausé<1. It is interesting to note that in a +0.01 forq=1-4, respectively.

100
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~In(t), and S~0. These results are well explained by the Not surprisingly, seemingly different growth models yield
MH equation given in Eq(17) and also agree with the the- the same shape distribution if they belong to the same uni-

oretical solution of the distribution for the MH equation that Versality class; the interfacial width, skewness, and kurtosis

has no up-down symmetry breaking term and yields a Gauséj_etermine the shape of the distribution. Another important
[

) o g —Tinding is that the sum of the exponenis. and 7_ is 7,
ian distribution[3]. Note that for this temperature, we ob +7_~4, and this result is confirmed not only in our simu-

serve no multiscaling behaylor from our calculation of lations of models obeying usual scaling but also in theoreti-
Gq(r.t) for L=80 att= 1(_)4- It is known that the large cur-  ¢4| solutions of continuum growth equations that are avail-
vature(LC) model[24,54 is also well explained by the MH  apje at this momenit3,41]. However, we found a deviation
equation(which indicates that the height distribution we con- from the sum rule for models exhibiting anomalous scaling
sider here is also Gaussjawith a Gaussian step size distri- as well as multiscaling—that isy, + 7_<4 with »_=1.
bution[24]. The LC model exhibits anomalous scaling with Based on the result that the sumss + »_~4 for models
k~1in (1+1)D [xk~0 with G(r=1}t)~In(t) in (2+1)D] [e.g., the LC model and th@+1)D MBE model at the tem-
but no multiscaling[24], which is in good agreement with PeraturekgT/J=1] exhibiting anomalous scaling but no

our result forkgT/J=1. These results provide an important Multiscaling, we believe that the deviation from, +7_
clue for the deviation fromy. +7_~4, observed in the ~4 results from the presence of multiscaling in the models

models we studied here—that is, the multiscaling is respontat We used here. For the DT and WV models as well as the

sible for the deviation regardless of the presence of anoma{—zﬂ)D MBE model at the temperaturleg'lf/.]=0.23_4, the
lous scaling. multiscaling (as well as anomalous scaling nonuniversal

At this moment, it is unclear to us why., +7_~4 does and transient. Thus, in the long-time asymptotic limit, we

. I tt + y_=~4 for th Is.
not hold (and insteady . + n_<4) for a model exhibiting Expect 1o recoven . + 7 or the models

L L The height distribution of Ag films grown on a Si sub-
multiscaling. We suspect that the deviation from+7-  gyate is Gaussian witi=0.7+0.1[31]. The experimental

~4 for the models we discussed in this section may resulf, e of the roughness exponent is in good agreement with
from t'he. |nvaI|.d.|ty of the central limit thgorem due to the g, finding in the homoepitaxial thin-film growth model at
generic instability, but it does not explain why_=1 for = {he temperaturiegT/J=0.234, and is close to the theoretical

suc_h models. Fu_rthermore, finding a theoretical height qlistri- rediction of the Lai-Das Sarma-VillailLDV) equation that
bution that explains the reason seems to be a very formidablg, \t5ins an explicit nonlinear symmetry-breaking term. The

task since one needs to solve a Langevin equation that pogs, ssjan height distribution in the experiment, however, in-

sibly has an infinite number of marginal operators. Howevergicates that the asymptotic skewness is zero and there is no
if the multiscaling is nonuniversal and transient as shown iny, iscaling behavior present in contrast to our result for a
Refs.[5,25,53 for the DT model, then we expect to recover gy system. Although we do not know the detailed growth
7+ +7-~4 in the long-time asymptotic regime. mechanisms of the system in the experiment leading to such
a similar exponent to the theory, if the LDV equation is a
IV. SUMMARY AND CONCLUSION possible growth equation describing the experimental result,
then the fourth-order nonlinear term in the equation probably
growth models, we have studied the normalized height dis;g_Oes not play a role in the asymptqtic height distribytio_n
[like the second-order nonlinear term in the KPZ equation in

tribution that is a fundamental quantity in a study of non- ; . T
equilibrium surface roughening phenomena. Scaled distribu(_1+1)D] and results in the same Gaussian distribution as that

tions of the models are obtained, and the shape of eacft:]?r the MH equation, but this needs to be verified by a
distribution is discussed in terms of the interfacial Width,t eory. . . . . .
skewness, and kurtosis. We find a simple functional form that It \.N'” be Interesting to examine the he'.ght distribution of
explains size-dependent behavior of the skewness and kurtd'°VI"d sur;gggs In e)iperlmenlt', es_lp_)ﬁuall')(l for Fge cases
sis in the transient regime, and obtain the transient- and longt"oWn to exhibit anomalous scaling. This will provide some

time values of the skewness and kurtosis for the models. ore valuable information for our_understanding of noneq_ui-
show that the strength of the skewness determines the mafjum surface growth and shed light on the deep connection
nitude of the deviation from Gaussian, i.e., asymmetry of the’©tWeen the height evolution and its dynamic scaling.
distribution, and that the normalized height distribution can
be used to extract the exponents characterizing the universal-
ity class of the system. A detailed shape of a distribution has This work was supported by the National Science Foun-
been determined from an exponential fitting, yielding the ex-dation under Grant No. DMR-9727714 at the University of

Using extensive simulations of several well-known
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