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Dynamic finite-size scaling of the normalized height distribution in kinetic surface roughening
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Using well-known simple growth models, we have studied the dynamic finite-size scaling theory for the
normalized height distribution of a growing surface. We find a simple functional form that explains size-
dependent behavior of the skewness and kurtosis in the transient regime, and obtain the transient- and long-
time values of the skewness and kurtosis for the models. Scaled distributions of the models are obtained, and
the shape of each distribution is discussed in terms of the interfacial width, skewness, and kurtosis, and
compared with those for other models. Exponentsh1 andh2 , which characterize the form of the distribution,
are determined from an exponential fitting of scaling functions. Our detailed results reveal thath11h2'4 for
a model obeying usual scaling in contrast toh11h2,4 with h251 for a model exhibiting anomalous
scaling as well as multiscaling. Since we obtainh11h2'4 for a model exhibiting anomalous scaling but no
multiscaling, we conclude that the deviation fromh11h2'4 is due to the presence of multiscaling behavior
in a model.
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I. INTRODUCTION

Kinetic roughening of growing surfaces is a well-know
nonequilibrium phenomenon and has drawn much atten
to the field of statistical and condensed-matter physics@1–4#.
This is because of its practical applications in material f
rication and the theoretical challenge of critical behav
similar to that found in magnetic systems near the criti
temperature. One of the key issues in this active area i
make a connection between experimental or simulationa
sults and theoretical continuum growth equations deri
from phenomenological arguments@1–5#. Many experiments
have been performed and simple atomistic growth mod
that capture the key features of the system have been
signed to help us understand the dynamic evolution of s
face morphologies in terms of growth-related exponents
are seemingly model dependent and compared to the the
ical prediction for the system. From the theoretical persp
tive, the issue of understanding scaling and critical expone
for a nonequilibrium system is of great importance. The id
of self-affine scaling@6# was introduced to explain the ki
netic surface roughening that evolves in a scale-invar
state with power-law behavior in characteristic length sca

So far, a few universality classes, e.g., Edwar
Wilkinson ~EW! @7#, Kardar-Parisi-Zhang ~KPZ! @8#,
molecular-beam epitaxy~MBE! class @9–11#, etc., have
emerged from these considerations. For example, the s
mentation of clay particles belongs to the EW universa
class, whereas the Eden model@12#, ballistic deposition@13#,
and the restricted solid-on-solid model~RSOS! @14# belong
to the KPZ class. Especially, for the MBE universality cla
there is an interesting point worth mentioning; with roug
ness and dynamic exponents characterizing surface fluc
tions ~interfacial width! of a growing surface, sometimes
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new exponent is necessary to explain the time evolution
the mean step size unlike other models obeying usual sca
for which there is no such new exponent. This phenome
is called anomalous scaling behavior—the local and glo
dynamic scaling behaviors are distinctly different@15–17#—
and several experiments have reported anomalous scalin
havior in a variety of kinetic roughening systems@18–23#.
Krug found a similarity between a simple 111-dimensional
MBE model proposed by Das Sarma and Tamborenea~DT!
@10# and fully developed turbulence, and showed that this
model exhibits spatial multiscaling and its step size distrib
tion is not a Gaussian@24#. Later simulation results, how
ever, indicate that the DT model does not exhibit tr
asymptotic multiscaling@5,25#.

More fundamental understanding of a dynamic proces
growing films can be achieved from the normalized heig
distribution function, often called the probability heigh
distribution function. One may be able to calculate the d
tribution analytically for some special cases by solving
Fokker-Planck equation obtained from a Langevin equat
that governs the time evolution of height fluctuations in
growing surface@3,26–28#; however, it is very difficult to
solve the Fokker-Planck equation when a nonlinear term
present in the theoretical continuum growth equations. F
thermore, obtaining the early-time behavior of the distrib
tion is a formidable task.

Besides the analytical calculations, several experime
and simulational results for the distribution are now ava
able. The height distribution of a film of CuCl grown o
CaF2 ~111! is nearly Gaussian but slightly asymmetric on
the substrate is completely covered by the incoming part
flux @29#. The terrace width distribution of a vicinal Pt su
face@30# and the height distribution of a film of silver grow
on a silver substrate@31# seem to be well approximated by
Gaussian function. Asymmetric behavior of the distributi
is more pronounced in the simulations of a model for me
homoepitaxy with a step-edge barrier~Ehrlich-Schwoebel
barrier! @32#, zero-temperature-directed polymers in a ra
dom potential in several dimensions@33#, and a simple

ry,
D
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Y. SHIM AND D. P. LANDAU PHYSICAL REVIEW E 64 036110
growth model of thin films by molecular beam epitaxy@34#.
In this paper, we focus on and present results for the

tailed shape of the normalized height distributions at ea
and late times obtained from extensive simulations of a
riety of well-known simple growth models that belong
diverse universality classes. The shape of the distributio
intermediate times and in the asymptotic regime is discus
in terms of three quantities, the interfacial width, skewne
and kurtosis, all of which will be defined in the next sectio
We also discuss the characteristic of exponents that des
the shape of scaled distributions. In Sec. II we provide
background related to kinetic roughening and discuss mo
in detail that we have used. Scaling results of the distri
tion, skewness and kurtosis are presented and discuss
Sec. III. Section IV contains a brief summary and conc
sion.

II. BACKGROUND

A. Theory

Kinetic roughening of growing surfaces is usually chara
terized by the interfacial width when global scaling behav
is concerned,

w~L,t !5^@h~r ,t !2^h~ t !&#2&1/2, ~1!

whereh(r ,t) is the height at the lateral positionr and timet
and ^h(t)&5(1/Ld21)( rh(r ,t) for a (d21)-dimensional
substrate. The interfacial width has a scaling form@6#

w~L,t !;Lz f ~ t/Lz! ~2!

with the roughness exponentz and the dynamic exponentz.
In the asymptotic time and size regimes

w~L,t !;H tb for 1!t!Lz

Lz for t@Lz,
~3!

whereb5z/z. The skewness is defined as

S~L,t !5^@h~r ,t !2^h~ t !&#3&/w~L,t !3, ~4!

and the kurtosis is defined as

Q~L,t !5@^@h~r ,t !2^h~ t !&#4&/w~L,t !4#23. ~5!

The skewness measures the asymmetry of the height d
bution and the kurtosis gauges the weight contained in
tails of the distribution relative to a Gaussian@4#. Note that
for a random variable with zero mean the normalized th
and fourth cumulants are equal to the skewness and kurt
respectively@35#. Simulations of the restricted solid-on-sol
model and zero-temperature-directed polymers in a rand
media~DPRM!, which belong to the KPZ universality clas
show that in the transient regime (t/Lz→0), the skewness
converges touS(0)u'0.2820.29 @3,4,33# and for the latter
DPRM model in~111!D, the kurtosis isQ(0)'0.1220.16
@4,33# unlike the standard replica calculation implying th
the kurtosisQ[0 @36#.

In addition to those quantities defined above, correlat
functions can be used to determine the exponents relate
03611
e-
y
-

at
ed
s,
.
ibe
e
ls
-
in

-

-
r

tri-
e

d
is,

m

n
to

the surface roughening. The height-height correlation fu
tion G(r ,t), which is useful when local scaling behavior
concerned, is defined as

G~r ,t !5^uh~r1r 8,t !2h~r 8,t !u2&. ~6!

When a model exhibits anomalous scaling behavior,
mean step-size functionG(r 51,t) has a scaling form@17#

G~r 51,t !;H tk/z for r !t1/z!L

Lk for r !L!t1/z , ~7!

with kÞ0. The new exponentk50, however, for a mode
that obeys usual scaling and there is then no timet and sys-
tem sizeL dependence in Eq.~7!. It is interesting to note tha
when the roughness exponentz.1, a growing surface show
super-roughening behavior~i.e., the ratio of the saturated in
terfacial widthws(L) to system sizeL, ws(L)/L;Lz21→`
asL→`), and this leads to the anomalous scaling@17#; for
z51, G(r 51,t); ln(t) for r !t1/z!L and ; ln(L) for r !L
!t1/z. Whenz,1, however, the anomalous scaling has be
also observed in the simulations of thin film growth by MB
@34,37,38#. In order to explain these unexpected results
theoretical growth equation that has an infinite number
marginal operators has been proposed; see Refs.@4,34,39#
for details.

When multiscaling behavior of a growing surface is co
cerned, it is useful to consider theqth order height-height
correlation functionGq(r ,t) @24# defined as

Gq~r ,t !5^uh~r1r 8,t !2h~r 8,t !uq&1/q5jkqr aqf q~r /j!,
~8!

where the lateral correlation length isj(t);t1/z for 1!t
!Lz. The scaling function in Eq.~8! is f q(x)5const forx
!1 and f q(x);x2aq for x@1. Note that for q52,
G2(r ,t)5G(r ,t)1/2 in Eq. ~6! and the interfacial widthw
;G2(r @j);jk21a2. Thus,k25k/2 andk21a25z; a gen-
eral form given in Ref.@24# is kq1aq5z. As can be seen in
Eq. ~8!, multiscaling behavior characterized by th
q-dependent roughness exponentsaq is induced by
q-dependent local step-size fluctuations.

Besides the above quantities, it has been shown that
normalized height distribution of a growing surface is w
approximated by the following form@32,40#

PL„Dh~ t !…;w~L,t !21F„Dh~ t !/w~L,t !…, ~9!

where F is a scaling function andDh(t)5h(t)2^h(t)&.
Note that for a Gaussian height distributionP„Dh(t)…
5@A2pw(t)#21exp@2Dh2(t)/2w2(t)#, S(t)50 and Q(t)
50. Using Eq.~3! we find that the normalized height distr
bution function in Eq.~9! can be further simplified in two
limiting cases, i.e., at intermediate times and in t
asymptotic regime as

PL„Dh~ t !…;H t2bF1„Dh~ t !/tb
… for 1!t!Lz

L2zF2„Dh~ t !/Lz
… for t@Lz,

~10!
0-2
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DYNAMIC FINITE-SIZE SCALING OF THE . . . PHYSICAL REVIEW E64 036110
whereF1(x1) andF2(x2) are scaling functions with the ar
gumentsx1 andx2 , respectively. Thus the detailed shape
the scaling functions in both regimes can be obtained fr
data collapse, i.e.

F1~x1!;tbPL„Dh~ t !… for 1!t!Lz ~11!

F2~x2!;LzPL„Dh~`!… for t@Lz, ~12!

where x15Dh(t)/tb and x25Dh(`)/Lz with Dh(`)
5Dh(t@Lz).

The scaling functionsF1(x1) andF2(x2) seem to be well
approximated by an exponential function with the argume
x1 andx2 @3#. At intermediate times,

F1~x1!;H exp@2a1x1
h1# for x1.0

exp@2a2x1
h2# for x1,0

~13!

and for the long-time asymptotic~finite-size rounded! re-
gime,

F2~x2!;H exp@2b1x2
h1# for x2.0

exp@2b2x2
h2# for x2,0,

~14!

wherea6 andb6 are constant in each case. Ifh15h252,
then the distribution is simply Gaussian and reflects the c
tral limit theorem in statistics. Halpin-Healy and Zhan
@3,41# obtained the distribution functions of interfaces in
random media, using a replica scaling analysis. His re
shows that in~111!D, the exponentsh155/2 and h2

53/2 for 1!t!Lz, andh15h252 for t@Lz with z51/2
and z53/2. It is interesting to note that in the asympto
regime, the height distribution of the interfaces in a rand
media is Gaussian andh11h254 in both regimes.

B. Models

We have simulated a variety of simple growth models
determine the scaling form and shape of the normali
height distribution. Figure 1 shows a schematic rule for d
fusion for a freshly deposited particle in each model in~1
11!D, and it is straightforward to extend the growth alg
rithms to higher dimensions. In our simulations, we ha
used periodic boundary conditions and a growth proc
starts with a flat (d21)-dimensional substrate at timet50,
i.e., h(r ,t50)50, in all the models.

1. Restricted solid-on-solid (RSOS) model

The growth of a surface proceeds by increasing the he
h(r ) by one, i.e.,h(r )→h(r )11 on a randomly selected sit
r provided that the neighboring height differenceuDhu50,1
is obeyed at all stages. This rather simple growth model p
duces a compact surface with excellent scaling. Simulati
yieldedz(d)52/(d12) andz(d)52(d11)/(d12) @14#. It
is also known that the~111!D RSOS model is well de-
scribed by the KPZ equation
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~¹h!21h~r ,t !, ~15!

whereh(r ,t) is assumed to be ad-correlated Gaussian whit
noise. However, in 211D the exact solution of the KPZ
equation has not been obtained and only approximate s
tions by renormalization group and self-consistent calcu
tions are available.

2. Edwards-Wilkinson (EW) model

A freshly landed particle on a randomly selected site
noted by a square with slanted lines shown in Fig. 1~a! seeks
the lowest height in the nearest-neighbor sites and diffuse
the site provided that it has lower height than the prese
occupied site. If there are two equally probable sites prov
ing the same lower height, then the particle chooses on
them randomly and relaxes to the site. If there is no such s
then the particle stays there and becomes immobile. Edw
and Wilkinson discussed their model in detail in their pi
neering work@7#, but the atomistic simulation of the EW
model was first done by Family@42#. The EW model is well
described by the EW equation

]h

]t
5n¹2h1h~r ,t !, ~16!

which yieldsz(d)5(32d)/2 andz52 @7,43#. Note that in
211D, the nature of the diffusion in the atomistic model
important in determining its relationship to the EW equati
@44#.

3. Wolf-Villain (WV) model

A freshly deposited particle on a randomly selected s
seeks a nearest-neighbor site providing a maximum coo
nation number and moves to that site as shown in Fig. 1~b!.
If there are two equally probable sites@in ~111!D#, then the

FIG. 1. A schematic rule for diffusion for three growth mode
in ~111!D. The arrows show possible different paths.~a! The
Edwards-Willkinson ~EW! model, ~b! the Wolf-Villain ~WV!
model, and~c! the Das Sarma-Tamborenea~DT! model.
0-3
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Y. SHIM AND D. P. LANDAU PHYSICAL REVIEW E 64 036110
particle chooses one of them randomly. If there is no s
site, then the particle stays there and becomes immo
Since in the WV model@9#, each particle looks to increase i
bonds with neighbor sites, at long times and for large sys
size, a site at a valley on a surface tends to be more pre
able for a particle to diffuse to than the one on the top of h
This movement induces a downhill current and the W
model exhibits a crossover to the EW behavior, however,
crossover only appears at long times and for large syst
@45#. Note that unlike the previously introduced RSOS a
EW models that exhibit usual scaling, this WV model exh
its anomalous scaling withk/z50.38 @16# at early times
(! the crossover timetc), but which is transient behavio
before the crossover.

4. Das Sarma-Tamborenea (DT) model

A freshly deposited particle having only one neare
neighbor bond seeks a neighboring site providing m
bonds than the present one and diffuses to that site as sh
in Fig. 1~c!. If the present site has more than one bond, th
the particle becomes immobile. If there are two neighbor
sites @in ~111!D# providing more bonds regardless of th
number of bonds, then the particle chooses one of them
domly and moves to the site. The continuum growth equa
for the DT model@10# turns out be more complicated tha
initially thought. It is worth noting that the WV and DT
models have been initially suggested to describe the gro
of thin films by MBE with the fourth-order linear Langevi
equation~often called Mullins-Herring~MH! equation@46#!

]h

]t
52k0¹4h1h~r ,t !. ~17!

Later, however, anomalous scaling behavior has been
ported in the WV and DT models with different growth equ
tions from Eq. ~17! @15,16#. Especially, the DT model in
~211!D exhibits a crossover at late times and yields the sa
values ofz andz @5# as those (z52/3 andz510/3) obtained
from the Lai–Das Sarma–Villain~LDV ! growth equation
@11,47#

]h

]t
52k0¹4h1l1¹2~¹h!21h~r ,t !. ~18!

It has been shown that the ratio of the anomalous exponek
to the dynamic exponentz, k/z'0.4 for the ~111!D DT
model @17#. The same model in 211D shows that the ratio
k/z→0 long before the interfacial width saturates; howev
the long-lived transient behavior is much stronger in~111!D
@5#. This result indicates that the anomalous scaling may
transient behavior, and asymptoticallyk→0. Also note that
the LDV equation yieldsz51 in ~111!D, and thus, results
in logarithmic anomalous scaling.

In our simulation of the DT model, we focus our attentio
on a rather small system that exhibits anomalous scalin
well as multiscaling since the detailed discussion of
crossover is beyond our scope of this paper~and crossover is
very difficult to detect!.
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5. Absolute solid-on-solid (ASOS) model

In this model@48#, key parameters are the temperatureT
and deposition probabilityt with the Hamiltonian H
5(J/2)(^r ,r8&uh(r )2h(r 8)u, where ^r ,r 8& denotes the
nearest-neighbor summation in a (d21) dimensional sub-
strate. First, a random numberrnd is generated, and if the
numberrnd<t, then a particle is deposited on a random
selected siter ; otherwise, the particle on that site attemp
surface diffusion. The diffusion movement is accepted w
the transition probabilityW(r→r 8) to a randomly selected
nearest-neighbor siter 8

W~r→r 8!5@11exp~2DH/kBT!#21,

whereDH is the energy difference between before and a
diffusion. We specifically choose this model as an example
order to compare its scaled distribution with that of t
above EW model since this ASOS model belongs to the E
universality class@48#. In our simulation, we used the tem
peratureT51J/kB and deposition probabilityt50.1 in ~1
11!D that are the same as in Ref.@48#.

6. Molecular-beam epitaxy (MBE) growth model

In this model@48#, the diffusion process is thermally ac
tivated and reversible. There are two important time scale
this film growth simulation; one is for particle deposition an
the other is for surface diffusion.dt is time between the
successive deposition of particles andtD is time between the
successive surface diffusion events during the time inte
dt. Therefore, the total number of eventsTe occurring during
the time intervaldt is proportional to the sum of the tota
number of particle deposition~F! and diffusion~D! during
deposition of one monolayer~ML !. If one chooses the unit o
particle-beam flux~F! as 1 ML/sec, then during 1 sec, th
total number of events is

Te5F1D,

where the diffusion constantD is measured in the unit of pe
site per second~1/site/s!. Here, probability for particle depo
sition is t5F/Te51/(11D/F) and probability for surface
diffusion is 12t. Thus, the ratioD/F is one of the key
parameters determining surface morphologies.

The simulation process of this model is rather simp
First, a site is selected randomly, and then a particle is
posited on the selected site with probabilityt; otherwise, the
particle at that site tries to diffuse to one of the neare
neighbor sites. The transition probabilityW(r→r 8) is given
as

W~r→r 8!5exp@2En~r !/kBT#,

where the effective binding energy,En(r )5nJ with J.0
andn is the number of lateral bonds withn50,1,2,3,4 in a
two-dimensional substrate~simulations have been done i
211 dimensions!. Once an atom overcomes the energy b
rier En(r ), it diffuses to one of the nearest-neighbor sit
randomly with probability 1/4. It has been shown that t
0-4
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FIG. 2. Time- and size-dependent behavior of the normalized height distributions and their scaling plots for the~211!D RSOS model.
~a! Time- and~b! size-dependent behavior of the distribution. Scaling plots~c! at intermediate times withb51/4 and~d! in the asymptotic
regime withz50.4.
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Arrhenius type of surface diffusion breaks the up-down sy
metry @48#, possibly resulting in nonzero skewness.

All the length scales have been measured in the uni
lattice constanta and timet is measured in units of mono
layers~ML ! deposited. Simulations have been performed
Linux workstations with the random number generator,ran2,
given in Ref.@49#. Many averages have been taken to redu
statistical errors below 5%, especially in a calculation of
normalized height distribution that requires more averag
for example, 21 000~3000! different runs have been ave
aged forL5100 ~160! with a different random number see
for the ~111!D DT model.

III. RESULTS

As mentioned in the introduction, our focus is on detail
scaling behavior of the normalized height distribution
each model and the difference between models obeying u
and anomalous scaling. We first start with models obey
usual scaling.

A. Usual scaling

Figure 2 shows time- and size-dependent behavior of
normalized height distributions and their scaling plots for
~211!D RSOS model at intermediate times@w(t);tb with
b51/4] and in the asymptotic regime@ws(L);Lz with z
50.4]. Those values of the exponentsb and z that we ob-
tained are the same as those reported in Ref.@14#. The maxi-
mum of the distribution decreases due to the increase in
face fluctuations as growth proceeds, and reaches a ste
state value due to the saturation of surface fluctuations
03611
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finite size of system, as shown in Figs. 2~a! and 2~b!. Note
that the maxima of the distributions are atDh(t)50, i.e.,
h(t)5^h(t)&. We have also obtained excellent scaling for t
interfacial widthw(L,t) and forPL(t)[PL„Dh(t)50… with
z50.4 andz51.6. The scaling ofPL(t), i.e., LzPL(t) vs
t/Lz, clearly demonstrates thatPL(t);w(L,t)21, a feature
that we do not show here to avoid overcrowding of figur
This relationship can be also obtained from Eq.~9! in which
the scaling functionF„Dh(t)/w(L,t)… is constant when
Dh(t)50. This result implies that the time-dependent n
malized height distribution can be also used to extract
exponents characterizing the universality class of the syst

The scaled distributions at intermediate times and in
asymptotic regime shown in Figs. 2~c! and 2~d! are asym-
metric, but the former case is slightly more skewed, indic
ing that the magnitude of the skewness at intermediate ti
is larger than that for the latter case. Figure 3 shows
scaling results for the skewnessS and kurtosisQ for the
RSOS and EW models. For the~211!D RSOS model, we
obtained S520.2360.02 and Q520.1560.02 in the
asymptotic regime, shown in Figs. 3~a! and 3~b!. On the
other hand, for the~111!D RSOS model, the asymptoti
value of the skewness isS'0 with z51.5, which is the same
as that presented in Ref.@3#. The asymptotic scaled kurtosi
for the ~111!D RSOS model, shown in Fig. 3~c!, is Q5
20.6160.02.

Unlike the ~211!D RSOS model, the maximum of th
scaled height distribution of the 111D RSOS model at inter-
mediate times does not appear to be atDh(t)50, although
we cannot exclude this possibility considering the error ba
A similar result has been also observed in Ref.@33#. How-
0-5
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FIG. 3. Scaling plots of the skewness and ku
tosis for the RSOS and EW models.~a! The
skewnessS520.2360.02 and~b! the kurtosis
Q520.1560.02 in the asymptotic regime fo
the ~211!D RSOS model withz51.6. Arrows in
~a! and~b! show the minimum and maximum val
ues of the skewness and kurtosis forL5160, re-
spectively. ~c! The asymptotic kurtosisQ5
20.6160.02 for the~111!D RSOS model with
z51.5 and~d! Q520.6060.03 for the~111!D
EW model with z52. The transient-time (t/Lz

→0) ~e! skewness and~f! kurtosis for the~1
11!D and ~211!D RSOS model. In the thermo
dynamic limit, S(0)520.43460.002 andQ(0)
50.37060.002 in~211!D with 20<L<640 and
S(0)520.29260.002 andQ(0)50.15760.002
in ~111!D with 200<L<106; in the ~111!D
case, 10 has been multiplied toL21/z for clarity.
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the
ever, this behavior does not exist in the~111!D EW model
in which the scaled skewness yields bothS(t!Lz) and S
'0 with z51/2 andz52, but as shown in Fig. 3~d!, the
kurtosis Q520.6060.03 in the asymptotic regime. Not
that those asymptotic values for the~111!D EW model are
almost the same as those for the~111!D RSOS model. For
the ~111!D ASOS model, we findS'0 andQ;20.58 in
the asymptotic regime for the largest system size (L5320)
that we have simulated. This result for the ASOS model, t
the asymptotic values of the skewness and kurtosis witz
51/2 andz52 are almost the same as those for the~111!D
EW model, is not surprising since the model belongs to
EW universality class.

The transient-time (t/Lz→0) behavior of the skewnes
and Kurtosis for the RSOS model in~211!D @as well as in
~111!D# are shown in Figs. 3~e! and 3~f!, where we plotted
the minimum value of the skewnessSmin(L,t) and the maxi-
mum value of the kurtosisQmax(L,t)— denoted by arrows in
~a! and ~b! as an example forL5160—as a function of
L21/z. As can be seen in Figs. 3~e! and 3~f!, there is simple
size-dependent behavior in the transient-time skewness
kurtosis such that

S~0!2Smin~L,t !;L21/z and Q~0!2Qmax~L,t !;L21/z,
~19!

whereS(0) andQ(0) are the transient-time skewness a
kurtosis in the thermodynamic limit, respectively. Note th
Eq. ~19! explains the data well and yieldsS(0)520.434
03611
t

e

nd

t

60.002 andQ(0)50.37060.002 in ~211!D and S(0)5
20.29260.002 and Q(0)50.15760.002 in ~111!D for
RSOS model; the latter results are consistent with thos
Ref. @33#. It is worth noting that Eq.~19! implies that the
dynamic exponentz can be obtained from the early-time re
sult of the skewness or kurtosis.

The height distributions of the~211!D EW model at in-
termediate times and in the asymptotic regime are a
Gaussian as expected. It is interesting to note that at e
times, the skewness and kurtosis oscillate around zero w
period of 1 ML due to the quasi layer-by-layer growing n
ture of the model, and then decay to zero at late times.
relative phase difference between the oscillating skewn
and kurtosis is 1/4 ML simply because the skewness is
odd function but the kurtosis is an even function.

In order to obtain the detailed form of the scaled distrib
tions in Fig. 2, we have fitted them to the exponential fun
tions given in Eqs.~13! and ~14!. Figure 4 shows the expo
nents h1 and h2 for the ~211!D RSOS model at
intermediate times~a! and in the asymptotic regime~b!.
Power-law fits to the data yieldh152.660.2 andh251.5
60.1 in ~a! and h152.360.2 andh251.6760.13 in ~b!.
The results of fits for the RSOS, EW, and ASOS models
well as the transient- and long-time values of the skewneS
are given in Table I.

As can be seen in Table I, in the asymptotic regime,
values of the exponentsh1 and h2 for the ~111!D RSOS
model are the same as those for the~111!D EW model
0-6
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within the error bars with the same values of the roughn
exponent, skewness, and kurtosis. Our simulation result
the ~111!D RSOS and EW models in the regime, that bo
distributions are well approximated by Gaussian, is con
tent with the ~111!D steady-state theoretical solutions
Fokker-Planck equations for the KPZ and EW equation
both yield a Gaussian height distribution@3#. However, we
find a discrepancy in the asymptotic kurtosis between
theoretical solutions~implying Q50) and simulation results
for the models (Q'20.6). It should be noted that nothing
known about the preasymptotic regime even in the~111!D
KPZ problem except that the up-down symmetry must
broken due to an explicit nonlinear symmetry breaking te
in the KPZ equation.

It is clear from Table I that when the skewness is zero,
distribution is well described by a Gaussian function~except

FIG. 4. The exponentsh1 andh2 obtained from an exponentia
fit with b51/4 andz50.4 for the~211!D RSOS model. The solid
~dotted! line is a power-law fit, yielding the exponentsh1 (h2).
~a! h152.660.2 andh251.560.1 at intermediate times withx1

5Dh(t)/tb and ~b! h152.360.2 and h251.6760.13 in the
asymptotic regime withx25Dh(`)/Lz.
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its tails! with h15h2'2. If we examine the value of the
exponentsh1 and h2 as a function of the skewnessS, we
can easily confirm that a deviation from the Gaussian dis
bution is determined by the strength of nonzero skewne
Another interesting point is that the sum of the exponentsh1

and h2 is h11h254 within the error bars, a feature tha
may be an artifact of the central limit theorem in statistic
physics that yields a Gaussian distribution. Note that the c
tral limit theorem is valid if random variables are all simila
and there is no dominant~or only a small number of domi-
nant! one than others@50#.

B. Anomalous scaling

We first show the time evolution of the normalized heig
distribution of the~111!D DT model in Fig. 5~a!. The maxi-
mum of the distribution decreases due to the increase in
face fluctuations~the interfacial width! as timet increases,
and reaches its steady-state value as the interfacial w
saturates. Note that the locations of the maxima of the
tributions are not atDh(t)50 but shift to the right, depend
ing on timet. Figure 5~b! shows the shiftdh(L,t), which is
defined as the location of the maximum measured from z
in the x axis, as a function of system sizeL and timet. For
small timet,102 the shift is about one lattice constant an
then increases before saturating at late times. At intermed
times, the shiftdh(t);tf with f50.3860.02, and in its
steady statedh(L);La with a51.4860.07, shown in the
inset of Fig. 5~b!. The values off anda that we have ob-
tained for the shiftdh(L,t) are almost the same asb
50.375 andz'1.47, respectively, obtained from the interf
cial width w(L,t) given in Ref.@10#. This result simply im-
plies thatdh(L,t);w(L,t).

Similar behavior in the shiftdh(L,t) with f;0.38 has
been observed in the~111!D WV model. Due to the cross
over to the EW behavior aftertc'106 @45#, we have plotted
the ratio ofdh(L) to ws(L) instead of plottingdh(L,t) itself
in the asymptotic regime. As shown in Fig. 6, the ra
dh(L)/ws(L) is constant for 40<L<120 within the error
bars, and decreases slightly forL>120. The trend of the
decrease in the ratio for a rather large system sizeL is easily
explained because it is expected that fort.tc ,
dh(L)/ws(L)→0 due to the crossover;dh(L)→constant but
ws(L);L1/2→` asL→`. We also calculated theqth-order
height-height correlation functionGq(r ,t) for the ~111!D
WV model to check multiscaling behavior. Our result forL
TABLE I. The values of the exponentsh1 andh2 and the skewnessS(L,t) for various growth models
at intermediate times (1!t!Lz) and in the asymptotic regime (t@Lz). The exponentsh1 andh2 for the
~211!D EW model are determined by a Gaussian fit to the data.

1!t!Lz t@Lz

Model Dimension S(0) h1 h2 S h1 h2

EW 111 .0 2.060.1 2.060.1 .0 2.060.1 2.060.1
EW 211 .0 2 2 .0 2 2
ASOS 111 .0 .2 .2 .0 .2 .2
RSOS 111 20.29260.002 2.460.2 1.760.2 .0 2.160.2 2.060.2
RSOS 211 20.43460.002 2.660.2 1.560.1 20.2360.02 2.360.2 1.6760.13
0-7
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5104 at t5104(!tc) shows that the model exhibits mult
scaling@51#, but that is transient behavior before the cro
over to the EW behavior.

The scaled height distributions of the~111!D DT model
at intermediate times and in the asymptotic regime are
sented in Fig. 7. In order to make the maxima of the sca
distributions be at zero on thex axis, constantsa1 and a2
have been subtracted. Withz51.45 andb50.375 excellent

FIG. 5. The time evolution of the normalized height distributi
and the shiftdh(L,t) in the distributions for the~111!D DT model.
~a! The normalized height distributionPL@Dh(t)# for system size
L580 as a function of six different timet. ~b! The shiftdh(L,t) in
the time-dependent distributions shown in~a! as a function of sys-
tem sizeL and timet. The solid line is a power-law fit to the dat
with dh(t);t0.3860.02. The inset in~b! shows the shiftdh(L) in the
asymptotic regime. The dotted line in the inset is a power-law
with dh(L);L1.4860.07.

FIG. 6. The ratio of the steady-state shiftdh(L) to the saturated
interfacial widthws(L) for the ~111!D WV model.
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scaling has been obtained in both regimes. The scaled d
butions in both regimes appear to be asymmetric, indica
that the skewness is nonzero; indeed,S(t)520.5060.01 for
102<t<106 andL5320. We have obtained excellent scalin
for the interfacial widthw(L,t) and for PL(t) with z51.47
and z54 for system sizeL<80. We have also observed
very slow crossover fromb50.375 tob50.333 at late times
with a change inz'1.5 to a lower value~probablyz51) in
~111!D asL becomes larger. However, the crossover is
so manifest, but rather quite slow in the range of syst
sizes and timet that we have simulated.

The exponentsh1 and h2 for the scaled distribution of
the ~111!D DT model, shown in Fig. 7, are given in Fig.
where x15Dh(t)/tb2a1 and x25Dh(`)/Lz2a2. It turns
out that at intermediate times,h152.0360.12, and in the
asymptotic regime,h151.9060.16 when bothx1 and x2
.0, indicating that the distributions for thosex1 and x2
seems to be well approximated by a Gaussian funct
When bothx1 and x2,0, however, the Gaussian behavi
with h2'2 is manifest only near the maxima, but asux1u
and ux2u ~where bothx1 and x2,0) become larger, the dis
tributions are no longer Gaussian;h2 deviates from 2 in
both cases. It is quite clear from the insets of Figs. 8~a! and
8~b! that the exponenth251 whenx1 and x2,0 ~but not
near the maxima!, i.e., the distributions are pure exponent
functions. Based on these results, the relationh11h2'4 is
not valid, but ratherh11h2'3 in both regimes. For the
~111!D WV model, we observed very similar behavior
the height distributions and obtainedh151.8560.1 and
h251 for L<160 in the asymptotic regime. Note that th
DT and WV models exhibit multiscaling in the range of sy
tem size and time that we used in the calculation.

Figure 9 shows the normalized height distributions of t
~211!D MBE growth model in the asymptotic regime for th
temperatureskBT/J50.234 and 1. The distribution at th
temperaturekBT/J50.234 is not Gaussian but rather a
asymmetric skewed function~the skewness,S.20.61 for

t

FIG. 7. Scaling plots of the normalized height distribution
intermediate times and in the asymptotic regime shown in the in
for the ~111!D DT model. Here,b50.375 andz51.45 with the
constantsa150.12 anda250.022.
0-8
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L560). The location of the maximum of the distribution fo
kBT/J50.234 does not seem to be atDh(`)50 but rather at
Dh(`)52 even though it may be indistinguishable with
the error bars. The scaling analysis of the distribution sho
almost the same result that shown in Fig. 8~b! with h1

52.1760.20 andh251 whereh11h2'3.2; see the inse
of Fig. 9.

For kBT/J50.234, we have observed anomalous scal
@52# as well as multiscaling behavior~see Fig. 10! with z
50.7 andz53.4. Note that these values of the exponentsz
and z, are close to the theoretical prediction of the LD
equation. As can be seen in the inset of Fig. 10 forGq(r
51,t), the curvature of the dotted lines indicates that
multiscaling as well as anomalous scaling behavior obser
at this temperature seem to be transient due to a long cr
over ~probably to kq'0 in the long-time asymptotic re
gime!: indeed, Gq(r 51,t); ln(t) for 103<t<104 due to
kq /z'0, but this may not be the true asymptotic behav
Note that a power-law fit to the data for the region does
yield kq1aq'z, but we have observed a systematic dev
tion from that. The curvature does not result from finite-s
saturation sincew(t);tb with b'1/5 for L580 and 30<t
<104, and thus implies that in the limit oft→`, Gq(r
51,t);const becausez,1. It is interesting to note that in a

FIG. 8. The exponentsh1 andh2 obtained from an exponentia
fit for the scaling results shown in Fig. 7.~a! At intermediate times
@x15Dh(t)/tb2a1# with L5100 andt5103. Filled ~open! circles
are forx1.0 (x1,0). The solid line is a power-law fit to the dat
for x1.0, yieldingh152.0360.12. The inset is a linear plot of th
data forx1,0, and the dotted line is a guide line to the data.~b! In
the asymptotic regime@x25Dh(`)/Lz2a2# with L5100. Filled
~open! circles are forx1.0 (x1,0). The solid line is a power-law
fit to the data forx1.0, yielding h151.9060.16. The inset is a
linear plot for the data forx1,0, and the dotted line is a guide lin
to the data.
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range of system size and time (L<80 andt<53104), we
have observed isolated grooves in a surface profile that s
to be responsible for a generic instability~a rapid growth of
the magnitude of the height in a local region of the syste!
leading to the multiscaling@53#.

When the temperaturekBT/J51, however, the distribu-
tion is well approximated by Gaussian withh15h252,
and we have obtainedz51, z54, k;0 with G(r 51,t)

FIG. 9. The normalized height distribution of the~211!D MBE
growth model in the asymptotic regime. Here, the temperat
kBT/J50.234 and 1,L560, andD/F5102. The solid line is a
Gaussian fit to the data for kBT/J51 with P(x)
50.133 exp@20.0548x2# which explains the data well and implie
h15h252. The inset shows the exponentsh1 and h2 for the
temperaturekBT/J50.234, wherex25Dh(`)/Lz2a2.0 with z
50.7 anda250.13. Filled ~open! circles are forx2.0 (x2,0).
The dotted line in the inset is a power-law fit to the data forx2

.0, yielding h152.1760.20. A linear plot of the inset yields
h251, which is not shown here to avoid overcrowding of figure

FIG. 10. The qth-order height-height correlation functio
Gq(r ,t) for the ~211!D MBE model att5104. The inset shows the
qth-moment step-size functionGq(r 51,t). Here, L580, kBT/J
50.234, andD/F5102. The solid lines in~a! are power-law fits to
the data, yieldingaq50.5860.02,0.4560.01,0.3860.01, and 0.33
60.01 forq5124, respectively.
0-9
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; ln(t), and S'0. These results are well explained by t
MH equation given in Eq.~17! and also agree with the the
oretical solution of the distribution for the MH equation th
has no up-down symmetry breaking term and yields a Ga
ian distribution@3#. Note that for this temperature, we ob
serve no multiscaling behavior from our calculation
Gq(r ,t) for L580 at t5104. It is known that the large cur
vature~LC! model@24,54# is also well explained by the MH
equation~which indicates that the height distribution we co
sider here is also Gaussian! with a Gaussian step size distr
bution @24#. The LC model exhibits anomalous scaling wi
k'1 in ~111!D @k'0 with G(r 51,t); ln(t) in ~211!D#
but no multiscaling@24#, which is in good agreement with
our result forkBT/J51. These results provide an importa
clue for the deviation fromh11h2'4, observed in the
models we studied here—that is, the multiscaling is resp
sible for the deviation regardless of the presence of ano
lous scaling.

At this moment, it is unclear to us whyh11h2'4 does
not hold ~and insteadh11h2,4) for a model exhibiting
multiscaling. We suspect that the deviation fromh11h2

'4 for the models we discussed in this section may re
from the invalidity of the central limit theorem due to th
generic instability, but it does not explain whyh251 for
such models. Furthermore, finding a theoretical height dis
bution that explains the reason seems to be a very formid
task since one needs to solve a Langevin equation that
sibly has an infinite number of marginal operators. Howev
if the multiscaling is nonuniversal and transient as shown
Refs.@5,25,53# for the DT model, then we expect to recov
h11h2'4 in the long-time asymptotic regime.

IV. SUMMARY AND CONCLUSION

Using extensive simulations of several well-know
growth models, we have studied the normalized height
tribution that is a fundamental quantity in a study of no
equilibrium surface roughening phenomena. Scaled distr
tions of the models are obtained, and the shape of e
distribution is discussed in terms of the interfacial wid
skewness, and kurtosis. We find a simple functional form t
explains size-dependent behavior of the skewness and k
sis in the transient regime, and obtain the transient- and lo
time values of the skewness and kurtosis for the models.
show that the strength of the skewness determines the m
nitude of the deviation from Gaussian, i.e., asymmetry of
distribution, and that the normalized height distribution c
be used to extract the exponents characterizing the unive
ity class of the system. A detailed shape of a distribution
been determined from an exponential fitting, yielding the
ponentsh1 andh2 .
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Not surprisingly, seemingly different growth models yie
the same shape distribution if they belong to the same
versality class; the interfacial width, skewness, and kurto
determine the shape of the distribution. Another import
finding is that the sum of the exponentsh1 and h2 is h1

1h2'4, and this result is confirmed not only in our sim
lations of models obeying usual scaling but also in theor
cal solutions of continuum growth equations that are av
able at this moment@3,41#. However, we found a deviation
from the sum rule for models exhibiting anomalous scal
as well as multiscaling—that is,h11h2,4 with h251.
Based on the result that the sum ish11h2'4 for models
@e.g., the LC model and the~211!D MBE model at the tem-
peraturekBT/J51] exhibiting anomalous scaling but n
multiscaling, we believe that the deviation fromh11h2

'4 results from the presence of multiscaling in the mod
that we used here. For the DT and WV models as well as
~211!D MBE model at the temperaturekBT/J50.234, the
multiscaling~as well as anomalous scaling! is nonuniversal
and transient. Thus, in the long-time asymptotic limit, w
expect to recoverh11h2'4 for the models.

The height distribution of Ag films grown on a Si sub
strate is Gaussian withz50.760.1 @31#. The experimental
value of the roughness exponent is in good agreement
our finding in the homoepitaxial thin-film growth model a
the temperaturekBT/J50.234, and is close to the theoretic
prediction of the Lai-Das Sarma-Villain~LDV ! equation that
contains an explicit nonlinear symmetry-breaking term. T
Gaussian height distribution in the experiment, however,
dicates that the asymptotic skewness is zero and there i
multiscaling behavior present in contrast to our result fo
small system. Although we do not know the detailed grow
mechanisms of the system in the experiment leading to s
a similar exponent to the theory, if the LDV equation is
possible growth equation describing the experimental res
then the fourth-order nonlinear term in the equation proba
does not play a role in the asymptotic height distributi
@like the second-order nonlinear term in the KPZ equation
~111!D# and results in the same Gaussian distribution as
for the MH equation, but this needs to be verified by
theory.

It will be interesting to examine the height distribution
growing surfaces in experiment, especially for the ca
known to exhibit anomalous scaling. This will provide som
more valuable information for our understanding of noneq
librium surface growth and shed light on the deep connec
between the height evolution and its dynamic scaling.
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